Averaged one-dependence estimators (AODE) is a probabilistic classification learning technique. It was developed to address the attribute-independence problem of the popular naive Bayes classifier. It frequently develops substantially more accurate classifiers than naive Bayes at the cost of a modest increase in the amount of computation.
The AODE classifier
AODE seeks to estimate the probability of each class y given a specified set of features x1, ... xn, P(y | x1, ... xn). To do so it uses the formula
where denotes an estimate of , is the frequency with which the argument appears in the sample data and m is a user specified minimum frequency with which a term must appear in order to be used in the outer summation. In recent practice m is usually set at 1.
...
No hay comentarios:
Publicar un comentario